M. Tech. (Electric Power System)

- 1. Which of the following is the inverse of matrix $A = \begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix}$? The transpose of the matrix of this matrix is represented as:
 - (A) $\begin{bmatrix} \frac{1}{3} & 0 \\ -\frac{1}{6} & \frac{1}{2} \end{bmatrix}$
 - (B) $\begin{bmatrix} 0 & \frac{1}{6} \\ -\frac{1}{6} & \frac{1}{2} \end{bmatrix}$
 - (C) $\begin{bmatrix} \frac{1}{3} & -\frac{1}{6} \\ \frac{1}{3} & \frac{1}{2} \end{bmatrix}$
 - (D) $\begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$
- 2. If Rank (A) = 2 and Rank (B) = 3, then Rank (AB) is :
 - (A) 6
 - (B) 5
 - (C) 3
 - (D) Data inadequate

3. Find the minimum value of function $f(x) = x^2 - x + 2$:

(A)
$$\frac{1}{2}$$

(B)
$$\frac{3}{4}$$

(C)
$$\frac{7}{4}$$

(D)
$$\frac{1}{4}$$

4. Value of the definite integral:

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin 2x}{1 + \cos x} dx$$

is:

$$(A) - 2 \ln 2$$

(D)
$$(\ln 2)^2$$

5. The solution of differential equation $dy = \sqrt{1 - y^2} dx$ is :

(A)
$$y = \sin x + c$$

(B)
$$y = \sin(x+c)$$

$$(C) \quad \sin^{-1}(y+x) = c$$

$$(D) \quad \sin^{-1}(y+c) = x$$

6. The solution of $\frac{dx}{dt} = 3x + 8$ will be:

(A)
$$x = \frac{1}{3}e^{(t+c)} - \frac{3}{8}$$

(B)
$$x = \frac{1}{3}e^{3(t+c)} - \frac{8}{3}$$

(C)
$$x = \frac{1}{3}e^{(t+c)} + \frac{3}{8}$$

(D)
$$x = \frac{1}{3}e^{(t+c)} + \frac{8}{3}$$

7.	If $u=x^2-y^2$, then the conjugate has	armoni	c function is :
	(A) 2xy	(B)	$x^2 + y^2$
	(C) $y^2 - x^2$	(D)	$-x^2-y^2$
8.	The residue of function $f(z) = \frac{1}{(z+1)^n}$	$\frac{1}{(-2)^2}$	$\frac{1}{(z-2)^2} \text{ at } z = 2 \text{ is } :$
	(A) $-\frac{1}{32}$	(B)	$-\frac{1}{16}$
	(C) $\frac{1}{16}$	(D)	$\frac{1}{32}$
9.	Runs scored by batsman in 5 one-d	ay ma	atches are 50, 70, 82, 93 and 20. The
	standard deviation is :		
	(A) 25.79	(B)	25.49
	(C) 25.29	(D)	25.69
10.	If 'm' is the mean of Poisson Distr	ibutior	n, the P(0) is given by:
	(A) e^m	(B)	e^{-m}
	(C) <i>e</i>	(D)	m^{-e}
11.	Consider a continuous-time system	with i	input $x(t)$ and output $y(t)$ is given by
	$(t) = x(t) \cos(t)$. This system is:		
	(A) Linear and time-invariant		
	(B) Non-linear and time-invariant		
	(C) Linear and time-varying		
	(D) Non-linear and time-varying		

3

P.T.O.

12. The z-transform of a signal is given by $X(z) = \frac{1}{4} \frac{z^{-1}(1-z^{-4})}{(1-z^{-1})^2}$, its final value is:

(A) $\frac{1}{4}$

(B) Zero

(C) 1

(D) Infinity

13. Consider a signal defined by $x(t) = \begin{cases} e^{j10t} & \text{for } |t| \le 1 \\ 0 & \text{for } |t| > 1 \end{cases}$. Its Fourier transform is :

(A) $\frac{2\sin(\omega-10)}{\omega-10}$

(B) $\frac{2e^{j10}\sin(\omega-10)}{\omega-10}$

(C) $\frac{2\sin\omega}{\omega-10}$

(D) $\frac{e^{j10\omega}2\sin\omega}{\omega}$

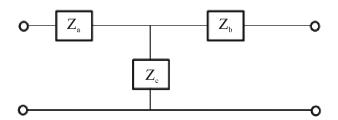
14. For a periodic signal $(t) = 30 \sin 100t + 10 \cos 300t + 6 \sin \left(500t + \frac{\pi}{4} \right)$, the fundamental frequency in rad/sec is :

(A) 1500

(B) 500

(C) 300

(D) 100


15. What is the Laplace transform of $v(t) = \sin(10t)u(t)$?

(A) $V(s) = \frac{10}{s^2 + 10}$

- (B) $V(s) = \frac{1}{s^2 + 10}$
- (C) $V(s) = \frac{1}{s^2 + 100}$
- (D) $V(s) = \frac{10}{s^2 + 100}$

(5)1	Л-CL-1(EPS)		P.T.O.
	(C) 10^4 and 100	(D) 10^2 and 100	
	(A) 10^4 and 200	(B) 10^2 and 1	
~ ∨•	1	nd Q factor are respectively given by:	.1, 1110
20.	-	10000 ohms, L = 10 mH, and C = 1 μ	F The
	(D) both circuits are capacitive.		
	(C) both circuits are inductive.	,	
	(B) series circuit is inductive and	•	
	(A) series circuit is capacitive and	•	
19.	At a frequency less than the resor	nant frequency:	
	(D) All independent voltage and of	current sources are open circuited.	
	(C) All independent voltage and of	current sources are short circuited.	
	current sources are open circu	uited.	
	(B) All independent voltage sou	rces are short circuited and all indep	endent
	voltage sources are open circ	•	
	(A) All independent current sour	rces are short circuited and all indep	endent
18.	In order to find Z in Thevenin's t	heorem :	
	(C) Current source	(D) Voltage source	
	(A) Short circuit	(B) Open circuit	
17.	An capacitor with zero initial cond	dition at $t = 0^+$ acts as :	
	(C) Z-transform	(D) None of these	
	(A) Transfer function	(B) Hilbert transform	
	the input signal is called:		
16.	The ratio of Fourier transform of	the output signal to the Fourier transfe	orm of

- 21. Kirchhoff's voltage law applies to circuit with:
 - (A) Linear elements only
 - (B) Non-linear elements only
 - (C) Linear, non-linear, active and passive elements
 - (D) Linear, non-linear, active, passive, time varying as well as time invariant elements
- 22. The open-circuit impedance parameter z_{12} for the T-network shown below is :

(A) Z_a

(B) Z_b

(C) Z_c

- (D) $Z_a + Z_b + Z_c$
- 23. The current flowing in series R-L circuit is $i(t) = 2 \sin 500t$ A. The applied voltage will be............ Given R = 10 ohms, and L = 20 mH.
 - (A) $20 \sin 500t \text{ V}$
 - (B) 20 cos 500t V
 - (C) $28.28 \sin (500t + 45^{\circ}) \text{ V}$
 - (D) $30.5 \cos (500t + 30^\circ) \text{ V}$
- **24.** If there are 'b' branches and 'n' nodes, the number of KCL equations required will be:
 - (A) b

(B) n

(C) (n-1)

(D) (b - n + 1)

25.	The	transient currents are due to :			
	(A)	Voltage applied in the circuit			
	(B)	Resistance of the circuit			
	(C)	Impedance of circuit			
	(D)	Changes in stored energy in in-	ductor	and capacitor.	
26.	Thre	ee equal resistances are connected	d in de	elta. If this delta is converted into s	tar :
	(A)	The resistances of star network	will	be lower than the resistances of d	lelta
	(B)	The resistances of star network	will	be larger than the resistances of d	lelta
	(C)	The resistances of both the net	works	will be equal	
	(D)	None of the above			
27.	The	mutual inductance between two	close	ly coupled coil is 1 H. Now the to	urns
	of c	one coil is decreased to half and	that c	of the other is doubled. The new v	alue
	of r	nutual inductance would be:			
	(A)	2 H	(B)	1 H	
	(C)	$\frac{1}{2}$ H	(D)	$\frac{1}{4}$ H	
28.	The	magnitude of statically induced	e.m.f	depends on :	
	(A)	The magnitude of flux			
	(B)	The rate of change of flux			
	(C)	The resistance of the coil			
	(D)	None of the above			
(5)N	И-CL	-1(EPS)	7	P.T	.0.

29.	The unit of time constant L/R is		
	(A) seconds	(B)	henry/sec.
	(C) ohms/sec.	(D)	volt/amp
30.	The Gaussian surface is:		
	(A) Real boundary	(B)	Imaginary surface
	(C) Tangential	(D)	Normal
31.	When currents are moving in the sa will be:	ame dire	ction in two conductors, then the force
	(A) Attractive	(B)	Repulsive
	(C) Retracting	(D)	Opposing
32.	The work done by a charge of 10	μC wit	th a potential 4.386 is (in μJ):
	(A) 32.86	(B)	43.86
	(C) 54.68	(D)	65.68
33.	Which of the following materials	is consi	dered as non-magnetic material?
	(A) Ferrimagnetic material		
	(B) Ferromagnetic material		
	(C) Anti-ferrimagnetic material		
	(D) Diamagnetic material		
34.	A coil of 360 turns is linked by a	a flux o	f 200 μ Wb. If the flux is reversed in
	0.01 sec, then find the e.m.f induc	ced in the	he coil :
	(A) 7.2 V	(B)	0.72 V
	(C) 14.4 V	(D)	144 V
(5)N	И-CL-1(EPS)	8	

The	current drawn by armature of a	DC 1	notor is:	
(A)	V/R_a	(B)	E_b/R_a	
(C)	$(V - E_b)/R_a$	(D)	$(E_b - V)/R_a$	
A so	eries motor is started without loa	ad. Th	e effect is that :	
(A)	the torque increases rapidly			
(B)	the speed increases rapidly			
(C)	current drawn increases rapidly			
(D)	the back emf decreases			
If th	ne flux of a DC motor approach	es zei	o, its speed will approach:	
(A)	zero			
(B)	infinity			
(C)	a stable value nearer to the rate	ed spe	eed	
(D)	None of the above			
Inte	rpoles are connected in series wi	th the	· :	
(A)	Line	(B)	Armature winding	
(C)	Shunt field winding	(D)	Line and armature winding	
The	direction of rotation of a DC m	otor	is reversed by :	
(A)	Adding resistance to the field of	circuit		
(B)	Reversing the supply connection	ns		
(C)	Interchanging the armature and	field	connection	
(D)	Reversing armature connections			
Л-CL	-1(EPS)	9		P.T.O.
	(A) (C) A se (A) (B) (C) (D) If th (A) (C) (D) Inte (A) (C) (C) (D) (D) (D)	(A) V/R _a (C) (V - E _b)/R _a A series motor is started without load (A) the torque increases rapidly (B) the speed increases rapidly (C) current drawn increases rapidly (D) the back emf decreases If the flux of a DC motor approach (A) zero (B) infinity (C) a stable value nearer to the rate (D) None of the above Interpoles are connected in series with (A) Line (C) Shunt field winding The direction of rotation of a DC m (A) Adding resistance to the field of (B) Reversing the supply connection	(A) V/R _a (B) (C) (V - E _b)/R _a (D) A series motor is started without load. The (A) the torque increases rapidly (B) the speed increases rapidly (C) current drawn increases rapidly (D) the back emf decreases If the flux of a DC motor approaches zero (A) zero (B) infinity (C) a stable value nearer to the rated specific properties are connected in series with the (A) Line (B) (C) Shunt field winding (D) The direction of rotation of a DC motor in (A) Adding resistance to the field circuit (B) Reversing the supply connections (C) Interchanging the armature and field (D) Reversing armature connections	(C) (V - E _b)/R _a (D) (E _b -V)/R _a A series motor is started without load. The effect is that: (A) the torque increases rapidly (B) the speed increases rapidly (C) current drawn increases rapidly (D) the back emf decreases If the flux of a DC motor approaches zero, its speed will approach: (A) zero (B) infinity (C) a stable value nearer to the rated speed (D) None of the above Interpoles are connected in series with the: (A) Line (B) Armature winding (C) Shunt field winding (D) Line and armature winding The direction of rotation of a DC motor is reversed by: (A) Adding resistance to the field circuit (B) Reversing the supply connections (C) Interchanging the armature and field connection (D) Reversing armature connections

	(A)	number of poles	(B)	flux per pole
	(C)	number of conductors	(D)	All of these
41.	In a	transformer, the voltage per tur	n in p	orimary and secondary remains :
	(A)	Always same		
	(B)	Always in ratio of K		
	(C)	Always different		
	(D)	Sometimes same		
42.	Tran	asformer cores are built up from	lamina	ations rather than from solid metal so
	that	:		
	(A)	Oil penetrates the core more ea	sily	
	(B)	Eddy current loss is reduced		
	(C)	Less insulation is required for t	he wi	ndings
	(D)	Hysteresis loss is reduced		
43.	Sho	rt-circuit test in a transformer is	used	to determine :
	(A)	Iron loss at any load	(B)	Copper loss at any load
	(C)	Hysteresis loss	(D)	Eddy-current loss
44.	Buc	hholz relay causes :		
	(A)	Tripping for major fault and ala	arm fo	or minor faults
	(B)	Alarm for major fault and tripp	ing fo	or minor faults
	(C)	Tripping for both major and mi	nor fa	nults
	(D)	Alarm for both major and mino	r faul	ts
(5)N	Ո-CL∙	-1(EPS)	10	

40. E.M.F of DC generator depends upon :

(5)N	Л-CL-1(EPS)	11	P.T.	Ο.
	(D) None of the above			
	(C) No change in rating			
	(B) Increase in rating			
	(A) Decrease in rating			
48.	With the increase in supply frequen	ncy of	a transformer, there is:	
	(D) High voltage secondary			
	(C) Low voltage secondary			
	(B) High voltage primary			
	(A) Low voltage primary			
	has:			
	(3 + j4) ohms and $(1 + j4)$ ohms res	spective	ely. It can be concluded that transform	ner
47.	The leakage impedances of primary	and se	econdary windings of a transformer	are
	(C) kilo-volt-amperes	(D)	kilo-volts	
	(A) kilo-watts	(B)	kilo-watt-hours	
46.	Transformers are rated in :			
	(D) None of the above			
	(C) B will supply more load than	A		
	(B) A will supply more load than	В		
	(A) both will share the load equal	ly		
	of A is more than the impedance of	of B. T	Then:	
45.	Two equal sized transformer A and	B are	e connected in parallel. The impedar	nce

49.	In a synchronous motor, minimum a	rmatur	re current occurs at :
	(A) Zero power factor	(B)	Leading power factor
	(C) Lagging power factor	(D)	Unity power factor
50.	An overexcited synchronous motor of	perate	es at :
	(A) Zero power factor	(B)	Lagging power factor
	(C) Leading power factor	(D)	Unity power factor
51.	To eliminate rth harmonic from the machine, the pitch of the coil must		ced e.m.f in a phase of synchronous
	(A) $(r-1)/r$ th fraction of full-pitch		
	(B) $(2r-1)/2$ th fraction of full-pitch	h	
	(C) $r(r+1)$ th fraction of full-pitch	h	
	(D) $2r(r+1)$ th fraction of full-pit	ch	
52.	If the rotor terminals of a 3-phase sli	p-ring	induction motor are not short-circuited
	and the supply is given to the stator	r, the	motor will:
	(A) not start	(B)	start running
	(C) run at high speed	(D)	run at low speed
53.	An increase in the value of air gap	flux d	lensity in an induction motor:
	(A) increases iron-loss		
	(B) increaes efficiency		
	(C) decreases efficiency		
	(D) Both (A) and (C) are correct		
(5)N	/I-CL-1(EPS)	12	

(5)N	Л-CL-1(EPS)	13	P.T.O.	
	(C) Primary distribution	(D)	Secondary distribution	
	(A) Primary transmission	(B)	Secondary transmission	
58.	The transmission lines which feed	differe	nt substations represent :	
	(D) System power factor is change	ed		
	(C) Some loads are switched off			
	(B) System frequency is reduced			
	(A) System voltage is reduced			
57.	During load shedding:			
	(C) both star and delta connection	(D)	None of these	
	(A) star connection	(B)	delta connection	
	capacitors in :			
56.	For self excitation of induction gen	erator,	it is desirable economically to connect	
	(D) Low head axial flow turbine			
	(C) A high head mixed flow turbi	ne		
	(B) Outward flow, reaction turbine	;		
	(A) Inward flow, impulse turbine			
55.	A Kaplan turbine is :			
	(C) 0.04	(D)	0.05	
	(A) 0.01	(B)	0.03	
	the slip is:			
54.	•	on mot	or runs at a speed of 1440 r.p.m., then	

59.	The	corona effect can be minimised	by in	creasing :
	(A)	the length of the conductors		
	(B)	spacing between conductors		
	(C)	diameter of the conductors		
	(D)	both spacing between conducto	rs and	diameter of the conductors
60.	In c	comparison with the steady state	stabil	ity limit, transient stability limit is :
	(A)	Always less	(B)	Always more
	(C)	Sometimes less	(D)	Same
61.	If th	ne supply frequency increases, th	ne skin	effect is:
	(A)	Decreased	(B)	Increased
	(C)	Remains same	(D)	None of these
62.	If sa	ag in an overhead line increases	, tensi	on in the line :
	(A)	Increases	(B)	Decreases
	(C)	Remains same	(D)	None of these
63.	Spai	rking occurs when a load is swi	tched	off, because the circuit has high:
	(A)	Inductance	(B)	Resistance
	(C)	Capacitance	(D)	Magnetism
64.	Loa	d flow study is used for :		
	(A)	Fault calculations	(B)	Stability studies
	(C)	System planning	(D)	All of these
(5)N	/I-CL	-1(EPS)	14	

65.	Distance relay operation is deper	ndent upo	n :
	(A) Ratio of current to current		
	(B) Ratio of voltage to current		
	(C) Ratio of voltage to voltage		
	(D) None of the above		
66.	The positive sequence reactance case of :	will be ea	qual to negative sequence reactance in
	(A) Transformer	(B)	Transmission line
	(C) Synchronous generator	(D)	Induction generator
67.	The damping ratio of the charac	teristic eq	uation $s^2 + 2s + 8 = 0$, is:
	(A) 0.353	(B)	0.453
	(C) 0.5	(D)	$\sqrt{2}$
68.	The transfer function of an integ	ral contro	oller is of the type :
	(A) K _C	(B)	T_S
	(C) $\frac{1}{T_S}$	(D)	$\frac{1}{T_S + 1}$
69.	In Routh-Hurwitz criterion, if	the first	element in any one row of Routh's
	tabulation is zero, then:		
	(A) The elements in the next ro	ow becom	ne infinite
	(B) Routh's test cannot be appli	ied	
	(C) The polynominal has to be number	divided b	by $(s + a)$, where a is a positive real
	(D) The system is highly unstab	ole	

15

(5)M-CL-1(EPS)

P.T.O.

70.	Which of the following techniques is not applicable to non-linear system?
	(A) Quasi linearization
	(B) Functional analysis
	(C) Phase-plane representation
	(D) Nyquist criterion
71.	The polar plot of a closed-loop system with a transfer function $\frac{G}{1+GH}$ is drawn for :
	(A) $G(s)$ (B) 1 + GH
	(C) $G(s)H(s)$ (D) $\frac{G}{1+GH}$
72.	The root loci of a systems has three asymptotes. The system can have :
	(A) Three poles
	(B) Five poles and two zeros
	(C) Four poles and one zero
	(D) All of the above
73.	Excessive noise in control system can cause :
	(A) reduction in band-width
	(B) reduction in gain
	(C) saturation in amplifying stages

(D) oscillations

74.	The number of operational amplifucontroller is:	fiers required to design an electro	nic PID-
	(A) 1	(B) 2	
	(C) 3	(D) 4	
75.	The damping torque can be produc	ed by :	
	(A) Eddy currents		
	(B) Gravity control		
	(C) Electrostatically		
	(D) Thermally		
76.	To increase the range of an ammet	er :	
	(A) a low resistance is connected	in series	
	(B) a low resistance is connected	in parallel	
	(C) a high resistance is connected	in series	
	(D) a high resistance is connected	in parallel	
77.	Electrostatic instruments are suitable	e for measurement of :	
	(A) AC and DC voltages	(B) AC voltage and current	
	(C) DC voltage and current	(D) AC voltage only	
78.	In a moving iron meter, the deflect	ing torque is proportional to :	
	(A) Square of current through the	coil	
	(B) Current through the coil		
	(C) Sine of the measurand		
	(D) Square-root of measurand		
(5)N	/I-CL-1(EPS)	17	P.T.O.

79.	A g	alvanometer has:		
	(A)	Air-friction damping	(B)	Fluid friction damping
	(C)	Spring coil damping	(D)	Eddy current damping
80.	The	static error band of an instrume	ent im	plies :
	(A)	The accuracy of the instrument		
	(B)	The error produced when the p	en is	stopped at some deflection
	(C)	The irrepeatibility of the instru-	ment	
	(D)	The error introduced in low va	rying	inputs
81.	Indu	actance is measured in terms of	capaci	itance and resistance by:
	(A)	Schering bridge	(B)	Anderson bridge
	(C)	Maxwell-Wien bridge	(D)	Wien bridge
82.	The	resistance of a shunt for a prec	cision	grade ammeter can be measured by :
	(A)	Kelvin's double-bridge	(B)	De Sauty's bridge
	(C)	Schering's bridge	(D)	Maxwell's bridge
83.	The	accuracy of a digital voltmeter	is spe	ecified as:
	(A)	Percentage of the actual reading	g	
	(B)	Percentage of the full scale rea	ding	
	(C)	Number of list significant digit	s	
	(D)	All of the above		
(5)N	/I-CI ·	-1(FPS)	18	

(5)N	/I-CL	-1(EPS) 19 P.T.(Э.
	(D)	Increasing emitter resistance and decreasing base resistances	
	(C)	Reducing emitter resistance and increasing base resistances	
	(B)	Increasing both emitter and base resistances	
	(A)	Reducing both emitter and base resistances	
87.	Curi	rent stability of a common collector amplifier can be increased by :	
	(C)	SCR (D) All of these	
	(A)	Silicon diode (B) Zener diode	
	of le	oad resistance, uses :	
86.	A c	ircuit in which the output voltage remains constant irrespective of the val-	ue
	(D)	None of the above	
	(C)	Recombine with the electrons in the emitter itself	
	(B)	Recombine with the electrons in the base	
	(A)	Defuse through the base into the collector region	
85.	Whe	en a PNP transistor is properly biased, the holes from the emitter :	
	(D)	Dynamometer type instrument	
	(C)	Both moving coil and moving iron instrument	
	(B)	Moving iron instrument	
	(A)	Moving coil instrument	

84. AC/DC VTVM is a :

88.	In a	n ideal balanced differential amp	plifier,	the common-mode gain is:
	(A)	Double of that of single-ended	d differ	ential amplifier
	(B)	Half of that of single-ended d	lifferent	ial amplifier
	(C)	Very high		
	(D)	Zero		
89.	The	high and low frequency respons	se of a	n RC coupled circuit can be increased
	by:			
	(A)	Increasing load resistance		
	(B)	Decreasing load resistance		
	(C)	Increasing coupling capacitor		
	(D)	Decreasing coupling capacitor		
90.	10 i	n BCD code is represented as :		
	(A)	10100	(B)	1100
	(C)	010111	(D)	None of these
91.	Surg	ge current rating of an SCR spe	ecifies t	the maximum :
	(A)	Repetitive current with sine wa	ave	
	(B)	Non-repetitive current with reco	tangula	r wave
	(C)	Non-repetitive current with sine	e wave	
	(D)	Repetitive current with triangul	ar wav	re
(5)N	1-CL	-1(EPS)	20	

For an SCR, dv/dt protection is achieved through the use of:
(A) RL in series with SCR
(B) RL across SCR
(C) L in series with SCR
(D) L across SCR
For discontinuous load current and extinction and $\beta > \pi$, in a single-phase full
converter each SCR conducts for :
(A) α (B) $\beta - \alpha$
(C) β (D) $\alpha + \beta$
In a 3-phase full-wave diode rectifier, if V_m is the maximum value of line voltage, then each diode is subjected to a peak inverse voltage of : (A) V_m (B) $\sqrt{3} V_m$ (C) $2 V_m$ (D) $3 V_m$
For type-A chopper, V_s is the source voltage, R is the load resistance and α is the duty cycle. The average output voltage for this chopper is : (A) α V_s (B) $(1-\alpha)$ V_s (C) V_s/α (D) $V_s/(1-\alpha)$

96.	A three-phase to single-phase cycloconverter consists of positive and negative
	group of converters, in this device, one of the two component converters would
	operate as a :

- (A) Rectifier if the output voltage V_o and output current I_o have the same polarity
- (B) Inverter if V_o and I_o have the same polarity
- (C) Rectifier if Vo and Io are of opposite polarity
- (D) Inverter if V_o and I_o are of opposite polarity
- **97.** In a 3-phase full converter, if load current is I and ripple free, the average thyristor current is :
 - (A) 1/2 I

(B) 1/3 I

(C) 1/4 I

- (D) I
- 98. In a constant source inverter, if frequency of output voltage is f Hz, then frequency of voltage input to constant source inverter is :
 - (A) f

(B) 2 f

(C) 3f

- (D) 4 f
- 99. In DC choppers, per unit ripple is maximum when duty cycle α is :
 - (A) 0.2

(B) 0.3

(C) 0.5

- **(D)** 0.7
- 100. In a single-phase semiconverter bridge, the average output voltage is given by :
 - (A) $\frac{1}{\pi} \int_{\alpha}^{\pi} V_m \cos \theta d\theta$
- (B) $\frac{1}{\pi} \int_{\alpha \frac{\pi}{2}}^{\pi} V_m \cos \theta . d\theta$
- (C) $\frac{1}{\pi} \int_{\alpha \left(\frac{\pi}{2}\right)}^{\alpha + \left(\frac{\pi}{2}\right)} V_m \cos \theta . d\theta$
- (D) $\frac{1}{\pi} \int_{\left(\frac{\pi}{2}\right) \alpha}^{\left(\frac{\pi}{2}\right) + \alpha} V_m \cos \theta . d\theta$

GENERAL APTITUDE

101. Find the missing numbers from the given responses:

38	54	61	79
21	?	12	24
19	09	14	?

(A)	18.	46
\ - -/		

- (B) 28, 51
- (C) 42, 62
- (D) 18, 44

102. Select the related words from the given alternatives.

.....: Zenith :: Fear : Composure

(A) Apex

- (B) Nadir
- (C) Heights
- (D) Foot-note

103. Ritesh starts from P and walks 2 km east up to Q and turns southwards and walks 1 km up to R. At R he turns towards east and walks 2 km up to S. He then turns northwards and walks 4 km to U. How far is he from his starting point?

(A) 3 km

(B) 4 km

(C) 5 km

(D) 6 km

104.	Complete	e tne	series	•	
	15	16	2		29

- (A) 17
- (B) 18
- (C) 19
- (D) 20

105. Direction: In this question some statements are followed by two conclusions numbered I and II. You have to take the given statements to be true even if they seem to be at variance with commonly known facts. Read all the conclusions and then decide which of the given conclusions logically follows/follow from the given statements, disregarding commonly known facts.

45

Statements:

All bottles are jugs.

All pans are jugs.

Some jugs are not mugs.

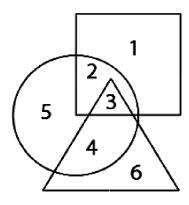
Conclusions:

- I. Some bottles are not pans.
- II. Some mugs may not be jugs.
- (A) Only conclusion I follows
- (B) Only conclusion II follows
- (C) Neither conclusion I nor conclusion II follows
- (D) Both the conclusions follow

106. Direction : Read the following informations carefully and answer the question given below :

In a certain code language,

'lavish lifestyle high desires' is coded as "@16f \$36i @9d \$16g"


'humanity seldom exhibit mercy' is coded as '@25h #16f @16g \$16e"

'opinion matters heart felt' is coded as "#9g \$25g %9e \$9d"

'push yourself achieve goals' is coded as "&9d \$25h \$9g %9e"

Find the code for "efficient worker"?

- (A) \$25i %16f
- (B) \$25i \$16f
- (C) @25i \$16f
- (D) \$25i #16f
- 107. Which of the following numbers is present only in circle and the triangle?

(A) 5

(B) 3

(C) 4

(D) 6

108.	Direction	:	Read	the	following	information	carefully	and	answer	the	question
	given belo	w	•								

8 persons from A to H sit around a square table such that 2 persons sit in the middle of each of the sides. The persons sitting on one side of the table face the persons sitting exactly opposite to them on the opposite side of table.

A sits on the immediate right of E. G faces the one who is second to the left of B. 3 persons sit between A and G. Two persons sit between F and D (when counted from one side only), who is adjacent to E. Only one person sits between G and C (when counted from one side only). A is not adjacent to F.

Who among the following sits second to the right of the one who faces E?

(A) C

(B) D

(C) F

(D) Either C or D

109. Direction: Study the question carefully and choose the right option:

1. Windows 2. Walls

3. Floor

4. Foundation

5. Roof

6. Room

(A) 4, 1, 5, 6, 2, 3

(B) 4, 5, 3, 2, 1, 6

(C) 4, 3, 5, 6, 2, 1

(D) 4, 2, 1, 5, 3, 6

110. Direction : Study the following information carefully and answer the question given below :

There are two couples in a family. K has two children. M is wife of O, who is brother of B. F is daughter of K. U is sister of S, who is son of O. T is son of B, who is a male.

How is M related to K?

(A) Sister

(B) Sister in law

(C) Brother

(D) Can't be determined

(5)M-CL-1(EPS)

26

GENERAL ENGLISH

Fill the blanks with correct phrasal verb:
ISumedha in town yesterday but sheme.
(A) was seeing, didn't see

- (B) saw, didn't see
- (C) met, didn't see
- (D) None of the above
- 112. The four sentences (labelled 1, 2, 3, and 4) given in this question, when properly sequenced, form a coherent paragraph. Decide on the proper order for the sentences and key in this sequence of four numbers as your answer:
 - In the era of smart world, however, 'Universal Basic Income' is an ineffective instrument which cannot address the potential breakdown of the social contract when large swathes of the population would effectively be unemployed.
 - In the era of industrial revolution, the abolition of child labour, poor laws and the growth of trade unions helped families cope with the pressures of mechanized work.
 - Growing inequality could be matched by a creeping authoritarianism that is bolstered by technology that is increasingly able to peer into the deepest vestiges of our lives.
 - 4. New institutions emerge which recognize ways in which workers could contribute to and benefit by economic growth when, rather than if, their jobs are automated.
 - (A) 1 2 3 4 (B) 2 3 1 4
 - (C) 3 2 4 1 (D) 2 4 1 3

	Only the blood stained road was a	witnesshis assassination.
	(A) of	(B) at
	(C) on	(D) to
114.	Direction : The given sentence has be	peen broken up into four different parts. The
	error, if any, will be in any one pa	rt of the sentence. Select the option which
	contains the part of the sentence w	which has an error (spelling, grammatical or
	contextual) :	
	At my arrival (A)/in Delhi (B)/I wen	nt straight (C)/to the nearest hospital. (D)/
	(A) At my arrival	
	(B) in Delhi	
	(C) I went straight	
	(D) to the nearest hospital	
115.	Direction : This question has two b	planks, each blank indicating thatsomething
	has been omitted. Choose the set o	f words for each blank that best fits in the
	context of the sentence:	
	Rapid urbanization and rising	in rainfall patterns make itthat we
	transparently manage water resource	s nationally.
	(A) variability, imperative	
	(B) assurance, necessary	
	(C) fluctuations, inefficient	
	(D) uncertainty, indifferent	
(5)N	1-CL-1(EPS)	28

113. Fill in the blank:

116.	Find the correctly spelt word:		
	(A) Perseverance	(B)	Preservarance
	(C) Perseverence	(D)	Preserverence
117.	Direction : Identify the words that	are co	ontextually similar to the phrase given
	in bold and mark that as your ans	wer. T	he options do not need to be correct
	grammatically:		
	Being a student with a technologi	cal bac	ekground, the concepts of balance of
	payments, macro economics, statement of loss and profit, liability and assets are		
	all Greek to me.		
	(A) Complex	(B)	Alienated
	(C) Different	(D)	Extreme
118.	Out of the four alternatives choose t	the one	which can be substituted for the given
	words/sentence in the question:		
	One who dabbles in fine arts for the love of it and not for monetary gains.		
	(A) Connoisseur	(B)	Amateur
	(C) Professional	(D)	Dilettante
119.	Find the synonym of Licentious:		
	(A) Immoral	(B)	Intellectual
	(C) Moral	(D)	Without license
120.	0. Find the antonym of Defunct :		
	(A) Absurd	(B)	Pliant
	(C) Live	(D)	Virulent
(5)M-CL-1(EPS)		29	