M.Tech. (Highway Engineering) Entrance Test, 2022

- 1. The value of $\int_{0}^{4} \sqrt{(16-x^2)} \, dx$ is :
 - (A) π

(B) 2π

(C) 3π

- (D) 4π
- 2. The value of $L^{-1}\left\{\frac{5s^2+8s-1}{(s+3)(s^2+1)}\right\}$ is :
 - (A) $2e^{-3t} + 3\cos t \sin t$
 - (B) $2e^{-3t} 3\cos t + \sin t$
 - (C) $3e^{-3t} + 2\cos t \sin t$
 - (D) $3e^{-3t} 2\cos t + \sin t$
- 3. A library has two books each having three copies and three other books each having two copies. In how many ways can all these books be arranged in a shelf so that copies of the same book are not separated?
 - (A) 80

(B) 100

(C) 120

- (D) 140
- 4. 21 mango trees, 42 apple trees and 56 orange trees have to be planted in rows such that each row contains the same number of trees of one variety only.

 Minimum number of rows in which the above trees may be planted is:
 - (A) 9

(B) 12

(C) 14

(D) 17

- 5. By integration the area bounded by the three straight lines y = 4 x; y = 3x and 3y = x is :
 - (A) 2 square units

(B) 3 square units

(C) 4 square units

- (D) 5 square units
- 6. The mean value of $y = 3x^2 + 4x + 1$ between x = -1 and x = 2 is :
 - (A) 2

(B) 4

(C) 6

- (D) 8
- 7. What is the length of the curve $x = 2\cos^3\theta$; $y = 2\sin^3\theta$ between the points corresponding to $\theta = 0$ and $\theta = \pi/2$?
 - (A) 2 units

(B) 3 units

(C) 4 units

- (D) 5 units
- **8.** What is the shape of the curve represented by $\frac{x}{5} = \sqrt{1 + \left(\frac{y}{2}\right)^2}$?
 - (A) Hyperbola

(B) Rectangular hyperbola

(C) Parabola

- (D) Ellipse
- 9. Give the order and degree of the ordinary differential equation given below:

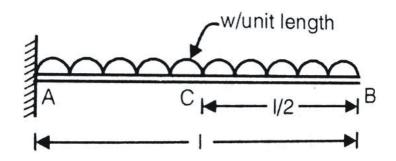
$$\frac{d^3y}{dx^3} + x \left(\frac{dy}{dx}\right)^{3/2} + x^2y = 0.$$

(A) 3 and 2

(B) 3 and 3

(C) 2 and 3

(D) 3 and 3/2


10.	Given that A and B are events	such	that	P(A) =	0.6,	P(B)	=	0.3	and
	$P(A \cap B) = 0.2$, find $P(A B)$ and $P(A B)$	P(B A)	resp	ectiv	vely:					
	(A) 2/3 and 1/3	(B)	1/3	and	2/3					
	(C) 1/4 and 2/4	(D)	2/4	and	1/4					
11.	Which of the following factor does	not a	ıffect	fati	gue o	f a m	aterial	?		
	(A) Loading condition									
	(B) Corrosion									
	(C) Temperature									
	(D) Toughness									
12.	What is the ratio of Young's modulu	s to n	nodul	lus o	f rigio	dity fo	r a ma	ıteri	al ha	ving
	Poisson's ratio of 0.2 ?									
	(A) 12/5	(B)	5/1	2						
	(C) 5/14	(D)	14/	′5						
13.	A straight wire 15 m long is subject	ected	to a	tens	sile st	ress (of 200	0 k	g(f)/	cm ² .
	Elastic modulus is $1.5 \times 10^6 \text{ kg(f)/cr}$	n². Th	ne co	effici	ent of	f linea	r expa	nsio	n fo	the
	material is 16.66×10^{-6} /°F. The term	perati	ire c	hang	e (in	°F) to	produ	ice	the s	same
	elongation as due to the 2000 kg	g(f)/cı	m ² to	ensile	e stre	ess in	the 1	nate	erial	will
	approximately be:									
	(A) 40	(B)	80							
	(C) 120	(D)	160)						
(S)	M-CL-04	3							P.1	.O.

14.	The plane of maximum shear stress has normal stress that is:
	(A) maximum
	(B) minimum
	(C) zero
	(D) None of the above
15.	A thick cylinder is subjected to external pressure. The magnitude of hoop stress
	at internal radius will be :
	(A) equal to the magnitude of hoop stress at external radius.
	(B) less than the magnitude of hoop stress at external radius.
	(C) greater than the magnitude of hoop stress at external radius.
	(D) equal to the magnitude of radial stress at internal stress.
16.	A cantilever beam of span 'L' and uniform flexural rigidity 'EI' is loaded with an
	upward force 'W' at the mid-point and downward force 'P' at the free end. The
	deflection at the free end will be zero, if:
	(A) $W = 3P/2$
	(B) $W = 2P$
	(C) $W = 16P/5$
	(D) $W = 5P$

4

(3)M-CL-04

17. In the cantilever beam shown below, what is the percentage of bending moment at the point C with respect to the maximum bending moment at the fixed support?

(A) 15%

(B) 20%

(C) 25%

(D) 30%

18. A timber beam is simply supported at the ends and carries a concentrated load at mid-span. The maximum longitudinal stress 'f' is 12 N/mm² and the maximum shear stress 'q' is 1.2 N/m². The ratio of span to depth would be :

(A) 10

(B) 5

(C) 6

(D) 4

19. The diameter of shaft B is twice that of shaft A. Both shafts have the same length and are of the same material. If both are subjected to the same torque, then the ratio of the angle of twist of shaft A to that of shaft B will be:

(A) 2

(B) 4

(C) 8

(D) 16

20.	The 'Euler' load for a column is 1	000 k	kN and crushing load is 1500 kN. The
	'Rankine' load is equal to :		
	(A) 600 kN	(B)	3000 kN
	(C) 2500 kN	(D)	4500 kN
21.			cross-section is subject to a maximum tangular cross-section with width 15 cm
	and depth 30 cm, then the maximum	imum	bending stress induced in the beam
	(in kg/cm ²) will be:		
	(A) 50	(B)	100
	(C) 150	(D)	225
22.	The absolute maximum Bending M 20 m due to a moving udl of 4 t/r		t in a simply supported beam of span nning over 5 m is :
	(A) 87.5 t-m at the support		
	(B) 87.5 t-m near the midpoint		
	(C) 12.5 t-m at the midpoint		
	(D) 87.5 t-m at the midpoint		
23.	In a two-hinged arch an increase in	temp	perature induces :
	(A) no bending moment in the arc	h rib.	
	(B) uniform bending moment in th	e arcl	h rib.
	(C) maximum bending at the crow	n.	
	(D) minimum bending moment at	the cr	rown.
(3)N	Л-CL-04	6	

24.	sprii	ymmetrical parabolic arch of span ngings. It supports a uniformly d span. The horizontal thrust in to	istribu	ated load of 2 tonnes per mete	
	(A)	8 <i>t</i>	(B)	16 <i>t</i>	
	(C)	20 <i>t</i>	(D)	Zero	
25.	The	Indian Standard (IS) code used	for d	esign of prestressed concrete i	s:
	(A)	IS 4326 : 2013	(B)	IS 3920 : 2012	
	(C)	IS 6512 : 2013	(D)	IS 1343 : 2012	
26.	100 of e	concrete beam is post-tensioned 0 N/mm ² . The slip at the jacking clasticity of steel is 210 kN/mm ² . norage slip if the length of the beam of the b	end w What	vas observed to be 5 mm. The is the percentage loss of stres	modulus
	(A)	3.5%	(B)	0.35%	
	(C)	7%	(D)	35%	
27.		ch one of the following statem	nents	is not correct in reinforced	concrete
	(A)	In the cracked section, concre-	ete be	elow the neutral axis is negle	ected in
	(B)	When section is subjected to ext due to compression in concrete		C,	eveloped
	(C)	In the cracked section, the steel equivalent concrete area	area 1	below the neutral axis is conve	rted into
	(D)	The neutral axis depth does not	depe	end on the modular ratio	
(3)N	/I-CL	-04	7		P.T.O.

28. Statement (I): The theory of reinforced concrete is developed with the assumption that there is perfect bond between steel and concrete, in other words, there is no slip.

Statement (II): In case of ribbed bars, there is no need to check the bond failures.

You are to examine these two statements carefully and select the answers to these items using the code given below :

- (A) Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct explanation of Statement (I).
- (B) Both Statement (I) and Statement (II) are individually true but Statement (II) is not the correct explanation of Statement (I).
- (C) Statement (I) is true but Statement (II) is false.
- (D) Statement (I) is false but Statement (II) is true

Read the following information and answer the three questions i.e. Q. Nos. 29—31 that follow:

A singly reinforced concrete beam with an effective span of 4 m has a rectangular cross cross-section width of 300 mm and an overall depth of 550 mm. The beam is reinforced with steel of Fe-415 grade of area 250 mm² at an effective depth of 500 mm. The self-weight with dead load of the beam is 4 kN/m. Consider M-15 grade concrete and $\sigma_{cbc} = 5$ MPa; $\sigma_{st} = 230$ MPa.

29. What is the bending moment due to dead load?

(A) 8000 Nm

(B) 80 kNm

(C) 32 kNm

(D) 3200 kNm

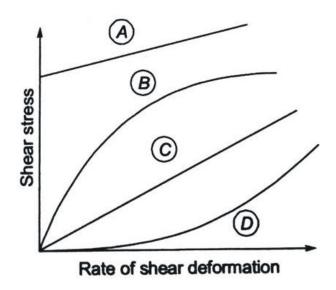
	(C) 56/3	(D)	86/3
31.	What is the depth of critical Neutra	al axis	?
	(A) 134.33 mm	(B)	124.33 mm
	(C) 154.33 mm	(D)	144.33 mm
32.	In the IS 456: 2000 criteria for a	accept	ing concrete, the variation in strength
	between each specimen shouldn't be	more	than:
	(A) \pm 30% of the average		
	(B) \pm 20% of the average		
	(C) \pm 15% of the average		
	(D) \pm 35% of the average		
33.	diameter of hole which can be pund	ched, i	te of 8 mm thickness. What is the least of the steel punch can be worked to a
	compressive stress of 800 N/mm ² an	d the	ultimate shear strength is 300 N/mm ² ?
	(A) 1.2 mm	(B)	12 mm
	(C) 2.1 mm	(D)	21 mm
34.	In a steel plate with bolted connection of failure under :	on, th	e rupture of the net section is a mode
	(A) Tension	(B)	Compression
	(C) Flexure	(D)	Shear
(8)	M-CL-04	9	P.T.O.

(B) 40/3

30. What is the modular ratio?

(A) 28/3

35.	The plastic modulus of a section is 4.8×10^{-4} m ³ . The shape factor is 1.2. The				
	plastic mo	ment capacity of the sec	ction is	s 120 kN-m. The yield stress of the	
	material is	:			
	(A) 100 N	ΛРa	(B)	240 MPa	
	(C) 250 N	⁄⁄IРа	(D)	300 MPa	
36.	A propped	cantilever of span L is c	arrying	a vertical concentrated load acting at	
	mid-span. The plastic moment of the section is M_p . The magnitude of the collapse				
	load is:				
	(A) 8M _p /I		(B)	$4M_p/L$	
	(C) $6M_p/I$		(D)	$2M_p/L$	
37.	Which of	the following cross-section	n shap	es has the largest shape factor ?	
	(A) Squar	e	(B)	I-Section	
	(C) Solid	Circle	(D)	Diamond	
38.	In a constr	ruction project, generally	50% o	f total project cost is attributed to:	
	(A) Equip	ment cost only			
	(B) Mater	ial cost only			
	(C) Manp	ower cost only			
	(D) Mater	ial plus equipment cost			
39.	The value	of Poisson's ratio for Bra	ass ma	terial is :	
	(A) 0.14		(B)	0.20	
	(C) 0.34		(D)	0.42	
(3)N	Л-CL-04		10		


40.	Mos	st of the Indo-Gangetic and Brah	maputi	ra flood plains, which are located north
	of t	he Vindhya-Satpura range, are :		
	(A)	The colluvial soils	(B)	The aeolian soils
	(C)	The alluvial soils	(D)	The talus soils
41.	Mar	ble is an example of:		
	(A)	Metamorphic Rock	(B)	Sedimentary Rock
	(C)	Igneous Rock	(D)	Argillaceous Rock
42.	For	non-homogeneous clays, the c	oeffici	ent of permeability in (mm/s) should
	rang	ge in between:		
	(A)	10^{-1} to 10^{-2}	(B)	10^{-2} to 10^{-3}
	(C)	10^{-3} to 10^{-4}	(D)	10 ⁻⁴ to 10 ⁻⁶
43.	The	maximum test load on a worki	ng pil	e should not exceed :
	(A)	250 kN		
	(B)	180 kN		
	(C)	two and a half times the desig	n load	1
	(D)	one and a half times the desig	n load	
44.	In a	n SPT test gave the average blow	w coui	nt for N value of 35 in fine sand below
	wate	er table, then what is the correc	t value	e of N due to dilatancy?
	(A)	20	(B)	25
	(C)	22	(D)	24
1(E)	M-CL	04	11	P.T.O.

45.	-		settles by 15 mm in a plate load test ading is 0.25 N/mm ² . The settlement
		·	n square under the same intensity of
	loading is:		ı
	(A) 15 mm	(B)	50 mm
	(C) 250 mm	(D)	25 mm
46.	Critical stress ratio from a cyc	elic tri-axial tes	t is given by the one of the following?
	Where σ_d = Deviatoric stres	s and $\sigma_c = Cc$	onfining pressure
	(A) $\sigma_d/(2\sigma_c)$		$\sigma_d/(3\sigma_c)$
	(C) $\sigma_c/(2\sigma_d)$	(D)	$\sigma_c/(3\sigma_d)$
47.	Which of the following is no	ot a method to	o identify expansive soils ?
	(A) Free-swell test		
	(B) Differential free-swell to	est	
	(C) Atterberg's limit tests		
	(D) Resonant column test		
48.	In under-reamed pile construc	etion, the ratio	of bulb diameter to shaft diameter is:
	(A) 1.5	(B)	2.5
	(C) 3.5	(D)	5
49.	Vibroflotation is most suitable	e for :	
	(A) very loose sands subme	rged under wa	ter.
	(B) dense sands not submer	ged under wat	er
	(C) silt and clay submerged	under water	
	(D) All of the above		
(3)N	M-CL-04	12	

The void ratio and specific gravity of a soil are 0.65 and 2.72 respectively. The		
degree of saturation (in percent)	corre	sponding to water content of 20%
is:		
(A) 53.5%	(B)	63.5%
(C) 73.7%	(D)	83.7%
A soil has a liquid limit of 45% a	nd lies	above the A-line when plotted on a
plasticity chart. What will be the	group	symbol of the soil as per IS soil
classification ?		
(A) CI	(B)	CL
(C) CH	(D)	CL-ML
Given that coefficient of curvature =	= 1.4, I	$D_{30} = 3$ mm, $D_{10} = 0.6$ mm. Based on
this information of particle size distr	ibution	for use as subgrade, what will be the
gradation of this soil ?		
(A) Well graded	(B)	Gap graded
(C) Poorly graded	(D)	Uniformly graded
A soil sample has a void ratio of 0).5. WI	nat shall be its porosity?
(A) 23%	(B)	33%
(C) 43%	(D)	63%
Given that $c = 2$ t/m ² , $\phi = 0^{\circ}$ and γ	= 2 t	m ³ , what is the depth of tension crack
developing in a cohesive soil backt	ill ?	
(A) 2 m	(B)	3 m
(C) 4 m	(D)	5 m
Л-CL-04	13	P.T.O.
	degree of saturation (in percent) is: (A) 53.5% (C) 73.7% A soil has a liquid limit of 45% a plasticity chart. What will be the classification? (A) CI (C) CH Given that coefficient of curvature = this information of particle size distrigradation of this soil? (A) Well graded (C) Poorly graded A soil sample has a void ratio of C (A) 23% (C) 43% Given that $c = 2 \text{ t/m}^2$, $\phi = 0^\circ$ and γ developing in a cohesive soil backf (A) 2 m (C) 4 m	degree of saturation (in percent) corre is: (A) 53.5% (B) (C) 73.7% (D) A soil has a liquid limit of 45% and lies plasticity chart. What will be the group classification? (A) CI (B) (C) CH (D) Given that coefficient of curvature = 1.4, If this information of particle size distribution gradation of this soil? (A) Well graded (B) (C) Poorly graded (D) A soil sample has a void ratio of 0.5. What is a void ratio

55.	If an infinite slope of clay at a depth 2 m has cohesion of 1 t/m ² and unit weight			
	of 2 t/m ³ , then the stability number	er will be :		
	(A) 0.15	(B) 0.25		
	(C) 0.36	(D) 0.42		
56.	Quick sand condition can occur w	hen:		
	(A) The soil's void ratio becomes	1		
	(B) The soil's upward seepage pro	essure becomes 0		
	(C) The soil's upward seepage proweight	essure becomes the same as its saturated unit		
	(D) The soil's upward seepage pre	essure becomes the same as its submerged unit		
	weight			
57.	When a brick's corner is cut off al	long the line connecting the midpoints of two		
	adjacent sides, the segment that's	left is called:		
	(A) Closer	(B) Squint brick		
	(C) Queen closer	(D) King closer		
58.	According to IS Code, the maximum	um slenderness ratio for load-bearing masonry		
	walls constructed with cement mor	rtar shall not exceed :		
	(A) 13	(B) 20		
	(C) 27	(D) 30		
59.	Wood is impregnated with creosote	e oil in order to :		
	(A) Change its colour	(B) Protect against fungi		
	(C) Protect the annular rings	(D) Fill up the pores		
(3)N	Л-CL-04	14		

60. Match List—I (Curve identification in figure) with List—II (Nature of fluid) and select the correct answer using the codes given below the lists:

List—I

- a. Curve A
- b. Curve B
- c. Curve C
- d. Curve D

Codes:

a b c d

(A) 3 4 1 2

(B) 2 4 1 3

(C) 3 1 4 2

(D) 2 1 4 3

List—II

- 1. Newtonian
- 2. Dilatant
- 3. Ideal Bingham plastic
- 4. Pseudo-plastic

61.	The surface tension in a soap bu	bble of 20	mm diameter, when the inside pressure
	is 2.0 N/m ² above the atmosphere	eric pressu	re, is:
	(A) 0.025 N/m		
	(B) 0.0125 N/m		
	(C) $5 \times 10^{-3} \text{ N/m}$		
	(D) $4.25 \times 10^{-3} \text{ N/m}$		
62.	As the depth of immersion of a centre of pressure :	a vertical p	plane surface increases, the location of
	(A) Falls closer to the centre of	of gravity of	of the area
	(B) Moves away from the cent	tre of grav	ity of the area
	(C) Ultimately coincides with t	he centre	of gravity of the area
	(D) Falls much below the centr	re of gravi	ity of the area
63.	While conducting the flow meas	surement us	sing a triangular notch, an error of 2%
	in head over the notch is observe would be:	ed. The pero	centage error in the computed discharge
	(A) $+7\%$	(B)	- 3%
	(C) +5%	(D)	-4%
64.	A circular pipe of radius R carri	es a lamina	ar flow of a fluid. The average velocity
	is indicated as the local velocity centre?	at what ra	adial distance, measured from centre to
	(A) 0.50R	(B)	0.71R
	(C) 0.67R	(D)	0.29R
(3)1	M-CL-04	16	

65.	Which one of the following phenome hammer?	ena in a pipe flow is termed as water
	(A) The sudden rise of pressure in a l	long pipe due to sudden closure of valve
	(B) The rise of pressure in a pipe flo	w due to gradual closure of valve.
	(C) The rise of negative pressure.	
	(D) The zero pressure in a pipe flow.	
66.	The depth of flow of a channel section is called:	at which the specific energy is minimum
	(A) Critical velocity (F	B) Hydraulic depth
	(C) Critical depth (I	D) Subcritical depth
67.	Which one of the following statementurbine?	ents is correct with respect to Kaplar
	(A) The peripheral velocity at inlet is	more than peripheral velocity at outlet.
	(B) Velocity of flow at inlet is more	than velocity of flow at outlet.
	(C) The peripheral velocity at inlet an	nd outlet are equal.
	(D) Velocity of flow at outlet is more	e than velocity of flow at inlet.
68.	A single acting reciprocating pump has	a plunger of diameter 250 mm and stroke
	of 350 mm. If the speed of the pump	is 60 rpm and it delivers 16.5 lit/sec or
	water against a suction head of 5 m a	and a delivery head of 20 m, what is the
	co-efficient of discharge ?	
	(A) 0.72 (I	B) 0.79
	(C) 0.86 (I	D) 0.96
(3)	M-CL-04 17	P.T.O.

69.	The stream function is given by the expression $\psi = 2x^2 - y^2$. What is the resultant						
	velocity at a point denoted by $x = 2$ and $y = 3$?						
	(A) 10	(B)	12				
	(C) 15	(D)	18				
70.	A rectangular open channel of width	h 5.0	m is carrying a discharge of 100 m ³ /s.				
	The Froude number of the flow is	0.8. T	he depth of flow (in m) in the channel				
	is:						
	(A) 2	(B)	4				
	(C) 6	(D)	10				
71.	For subcritical flow in an open cha	nnel, 1	the control section for gradually varied				
	flow profile is:						
	(A) At the downstream end						
	(B) At the upstream end						
	(C) At both ends						
	(D) At any intermediate section						
72.	• , ,		base period (B) is 120 days for an				
	irrigated crop, then delta (A) in me	eters is	s given by:				
	(A) 102.8	(B)	1.38				
	(C) 0.73	(D)	0.01				
(3)N	Л-CL-04	18					

73.	A tube well having a capacity of 4 m ³ /hour operates for 20 hours each day during
	he irrigation season. How much area (in Ha) can be commanded if the irrigation
	nterval is 20 days and depth of irrigation is 7 cm?
	A) 1.71
	B) 1.41
	C) 22.9
	D) 2.29
74.	A hyetograph is a graph representing :
	A) rainfall volume with time
	B) rainfall intensity with time.
	C) rainfall volume with duration
	D) rainfall intensity over an area
75.	The direct runoff hydrograph of a storm obtained from a catchment is triangular
	n shape and has a base period of 80 hours. The peak flow rate is $30\ m^3/s$ and
	eatchment area is 86.4 km ² . The rainfall excess that has resulted the above
	nydrograph is :
	(A) 5
	B) 8
	C) 10
	D) 16
(3)N	-CL-04 19 P.T.O.

76.	Con	sider the following valves in a water distribution system:
	1.	Check valve
	2.	Pressure-reducing valve
	3.	Air relief valve
	4.	Scour valve
	5.	Sluice valve
	Whi	ch of these work automatically ?
	(A)	1, 3 and 4
	(B)	3, 4 and 5
	(C)	2, 4 and 5
	(D)	1, 2 and 3
77.	Stat	rement (I) : The flow in water distribution pipes takes place due to gravity.
	Stat	rement (II) : The flow in sewers takes place due to gravity.
	Usir	ng the code given below select the correct answer:
	(A)	Both Statement (I) and Statement (II) are individually true and Statement (II)
		is the correct explanation of Statement (I).
	(B)	Both Statement (I) and Statement (II) are individually true but Statement (II)
		is not the correct explanation of Statement (I).
	(C)	Statement (I) is true but Statement (II) is false.
	(D)	Statement (I) is false but Statement (II) is true
(3)N	Л-CL	-04 20

	(A)	Spec	ific yi	eld		(B)	Specific storage
	(C)	Spec	ific re	tentio	on	(D)	Specific capacity
79.					•		(Permissible concentration in drinking the codes given below the lists:
		List-	–I				List—II
	a.	Hard	ness			1.	0.1 mg/l.
	b.	Nitra	te cor	ncentr	ration	2.	1 mg/l.
	c.	Iron	conce	ntratio	on	3.	200 mg/L
	d.	Fluor	ride co	oncen	tration	4.	45 mg/l
	Cod	es:					
		a	b	c	d		
	(A)	3	4	2	1		
	(B)	3	4	1	2		
	(C)	4	3	2	1		
	(D)	4	3	1	2		
80.	If th	e slop	e of s	ewer	A is 1/100 and	that of	f sewer B is 1/400, the velocity of flow
			sew	ers A	and B will ha	ve a ra	atio of (size of both the sewers being
	same	e) :					
	(A)	1/2				(B)	1
	(C)	$(2)^{2/3}$	3			(D)	2
(3)N	Л-CL	-04				21	P.T.O.

78. The discharge per unit drawdown at the well is known as:

81.	Mat	latch List—I (Impurities to be removed from sewage) with List—II (Treatment					
	unit	t used) and select the correct answer using the codes given below the lists:					
		List-	—I				List—II
	a.	Large	e float	ing n	natter	1.	Trickling filter
	b.	Susp	ended	inorg	ganic matter	2.	Primary clarifier
	c.	Susp	ended	orga	nic matter	3.	Grit chamber
	d.	Disso	olved	organ	ic matter	4.	Screens
	Cod	es:					
		a	b	c	d		
	(A)	3	4	2	1		
	(B)	3	4	1	2		
	(C)	4	3	2	1		
	(D)	4	3	1	2		
82.	Floc anal	town is required to treat 4.2 m ³ /min of raw water for daily domestic supply. occulating particles are to be produced by chemical coagulation. A column alysis indicated that an overflow rate of 0.2 mm/s will produce satisfactory rticle removal in a settling basin at a depth of 3.5 m. The required surface area m ²) for settling is:					
	(A)	210				(B)	350
	(C)	1728				(D)	21000
83.	that	is ru		at fu	•		ad loss per unit length for a sewer pipe me sewer pipe that is running at half
	(C)					(D)	2
(3)N	Л-CL					22	

84.	A waste water sample diluted to 100 times with aeration water had an initial
	dissolved oxygen (DO) of 7.0 mg/L and after 5 days of incubation at 20°C, the
	DO was zero. The BOD of waste water is:
	(A) 700 mg/L (B) 100 mg/L
	(C) Cannot be determined (D) 7 mg/L
85.	Sewage treatment in an oxidation pond is accomplished primarily by :
	(A) algal-bacterial symbiosis
	(B) algal photosynthesis only
	(C) bacterial oxidation only
	(D) chemical oxidation only
86.	Chlorine is sometimes used in sewage treatment:
	(A) to avoid flocculation
	(B) to increase biological activity of bacteria
	(C) to avoid bulking of activated sludge
	(D) to help in grease separation
87.	The two air pollution control devices that are usually used to remove very fine
	particles from the flue gas are :
	(A) Cyclone and Venturi Scrubber
	(B) Cyclone and Packed Scrubber
	(C) Electrostatic Precipitator and Fabric Filter
	(D) Settling Chamber and Tray Scrubber

88.	Durir	ng temperature inversion in atmo	ospher	e, air pollutants tend to :
	(A)	accumulate above inversion layer	er	
	(B)	accumulate below inversion layer	er	
	(C)	disperse laterally		
	(D)	disperse vertically		
89.	For t	craffic surveys using origin and c	destina	tion studies, the most suitable method
	in ca	se of heavy traffic and absence	of sk	illed or trained personnel is:
	(A)	Road side interview method		
	(B)	License plate method		
	(C)	Work spot or home interview n	nethod	
	(D)	Return post card method		
90.	A ve	hicle has wheel base of 6.5 m.	What	is the off tracking while negotiating a
	curve	ed path with a mean radius 32 i	m ? (t	take $n = 1$)
	(A)	0.66 m	(B)	1.32 m
	(C)	0.33 m	(D)	1.2 m
91.	Acco	ording to Highway Research Boar	rd (HF	RB) classification system, which one of
	the f	following is not relevant for dep	enden	cy of group index of soil ?
	(A)	The amount of material passing	the 7	75-micron IS sieve
	(B)	The liquid limit		
	(C)	The plastic limit		
	(D)	The shrinkage limit		
(3)N	Л-CL-(04 2	24	

92.	The plate load test conducted with	h a 75	cm diameter plate on soil subgrade				
	yielded a deflection of 2.5 mm und	der a	stress of 800 N/cm ² . The modulus of				
	elasticity of the subgrade soil, in kN/cm ² , is :						
	(A) 141.6	(B)	154.6				
	(C) 160	(D)	185.4				
93.	On the Broad Gauge stretch of the	railway	y, the gradient is 1 in 150 and there is				
	a 4° curve. What is the allowed ru	ıling gr	radient ?				
	(A) 1 in 137	(B)	1 in 167				
	(C) 1 in 197	(D)	1 in 237				
94.	A light house of 120 m height is ju	st visib	ble above the horizon from a ship. The				
	correct distance (m) between the ship and the light house considering combined						
	correction for curvature and refract	ion, is	:				
	(A) 39.098	(B)	39098				
	(C) 42.226	(D)	42226				
95.	Analytic lens provided in a tacheon	neter is	sa:				
	(A) concave lens	(B)	convex lens				
	(C) plano-convex lens	(D)	plane lens				
96.	The magnetic bearing of a line AB	is S 45	5°E and the declination is 5° West. The				
	true bearing of the line AB is						
	(A) S45°E	(B)	S50°E				
	(C) S45°W	(D)	N45°E				
(3)N	Л-CL-04	25	P.T.O.				

97.	The	latitude and departure of a line	AB a	re + 78 m and - 45.1 m respectively.
	The	whole circle bearing of the line	e AB i	s :
	(A)	30°	(B)	150°
	(C)	210°	(D)	330°
98.	If th	the focal length of lens (f) , flying	height	(H) and height of ground above mean
	sea	level (h) are known, then the so	cale at	height 'h' (S_h) is equal to :
	(A)	f/(H-h)	(B)	(H - h)/f
	(C)	(h - H)/2f	(D)	2f/(H-h)
99.	A b	ar chart is commonly used beca	use :	
	(A)	It is simple to draw and easy	to und	erstand.
	(B)	It indicates at a glance the over	erall pr	ogress of the project.
	(C)	It shows critical and non-critic	al acti	vities.
	(D)	It incorporates uncertainties for	or dela	y in estimation of time required for
		completion of activities.		
100.	The	father of a teen kid observes that	t his so	on frequently uses the phone. He never
	ansv	vers the phone for less than f	ive mi	inutes and often takes an hour. The
	20-r	ninute call is the most common	call di	uration. The time (in minutes) it takes
	to c	omplete a phone call while using	g the	PERT is estimated as :
	(A)	20.16	(B)	22.16
	(C)	24.16	(D)	26.16
(3)N	1-CL	-04	26	

GENERAL APTITUDE

101. Find the missing number from the given alternatives :

6	8	2	20
7	2	4	30
8	7	6	?
5	5	9	50

(Λ)	55
(A)	່ງ

$$(C)$$
 45

102. Direction: Read the following information carefully and answer the question given below:

8 persons from A to H sit around a square table such that 2 persons sit in the middle of each of the sides. The persons sitting on one side of the table face the persons sitting exactly opposite to them on the opposite side of table.

A sits on the immediate right of E. G faces the one who is second to the left of B. 3 persons sit between A and G. Two persons sit between F and D (when counted from one side only), who is adjacent to E. Only one person sits between G and C (when counted from one side only). A is not adjacent to F.

Which of the following pairs represents the immediate neighbors of G?

103. Select the related numbers from the given alternatives :

85 : 55 :: 95 : ?

$$(A)$$
 60

$$(C)$$
 70

104. Direction: The following three statements are followed by three conclusions numbered I, II and III. Read the conclusions and then decide which of the given conclusions logically follows from the given statements, disregarding commonly known facts:

Statements:

Some applicants are examiners.

All invigilators are examiners.

Some students are applicants.

Conclusions:

- I. At least some invigilators being applicants is a possibility.
- II. All students being examiners is a possibility.
- III. Some applicants are not students.
- (A) Only I and II follow
- (B) Only III follows
- (C) Only II and III follow
- (D) Only I and III follow
- **105. Direction**: Read the given instructions carefully and answer the question given below:

P + Q states that P is 2 m East Of Q

P ^ Q states that P is 2 m South Of Q

P & Q states that P is 4 m East Of Q

P - Q states that P is 2 m West Of Q

P / Q states that P is 2 m North Of Q

Read the following information carefully and answer the question below:

What is the area of the square formed by the points V, Y, X and W?

(A) 8 m

(B) 5 m

(C) 4 m

(D) 5 m

106. Direction: Read the following information carefully and answer the question given below:

In a certain code language,

'lavish lifestyle high desires' is coded as "@16f \$36i @9d \$16g"

'humanity seldom exhibit mercy' is coded as "@25h #16f @16g \$16e"

'opinion matters heart felt' is coded as "#9g \$25g %9e \$9d"

'push yourself achieve goals' is coded as "&9d \$25h \$9g %9e"

Code - '\$25h' stands for which of the following words?

(A) irreversible

(B) reconciliation

(C) eminently

(D) prudence

107. Direction: Study the following information carefully and answer the question given below:

The Hansraj family consists of eight members P, Q, R, S, T, U, V and W. Among these eight members, there are three generations in which there are four male and four female members. Among all, each off-spring has both the parents alive. The husband of R's sister has two daughters. The husband of T's daughter is married to V. V has only one sibling. U's father-in-law has two granddaughters. W's brother has only one nephew and W is not V's mother. R is unmarried and Q has only one niece.

Who among the following is the Uncle of U's spouse?

(A) W

(B) T

(C) R

(D) Q

108. Noise is related to Din in the same way as Quiet is related to.....

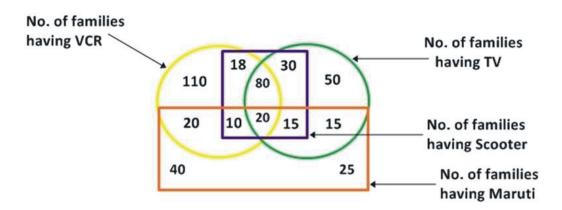
(A) Hush

(B) Dumb

(C) Gag

(D) Mouth

109. Direction: Arrange the following words in a meaningful order.


- 1. Frog
- 2. Eagle
- 3. Grasshopper
- 4. Snake
- 5. Grass
- (A) 5, 3, 4, 2, 1

(B) 1, 3, 5, 2, 4

(C) 3, 4, 2, 5, 1

(D) 5, 3, 1, 4, 2

110. Study the diagram given below and answer the question:

Find out the number of families which have TV and scooter both but have neither VCR nor Maruti.

(A) 50

(B) 45

(C) 30

(D) 15

(3)M-CL-04

GENERAL ENGLISH

111.	Fill	Fill in the blank with correct phrasal verb:							
	The	ne robber was so strong that there was no way we could have							
	(A)	(A) fought over (B) fought back							
	(C)	fought in back	(D)	fought against					
112.	The	four sentences (labelled 1, 2, 3	and 4)	given in this question, when p	oroperly				
	sequ	enced, form a coherent paragraph.	Decid	de on the proper order for the se	entences				
	and	key in this sequence of four nur	mbers	as your answer:					
	1.	Self-management is thus defined	d as t	he 'individual's ability to mana	age the				
		symptoms, treatment, physical a	and ps	sychosocial consequences and	lifestyle				
		changes inherent in living with	a chr	onic condition'.					
	2.	Most people with progressive d	isease	s like dementia prefer to have	control				
		over their own lives and health-care for as long as possible.							
	3.	3. Having control means, among other things, that patients themselves perform							
		self-management activities.							
	4.	Supporting people in decisions a	and ac	tions that promote self-manage	ment is				
		called self-management support requiring a cooperative relationship between							
	the patient, the family and the professionals.								
	(A)	1 2 3 4	(B)	2 3 1 4					
	(C)	3 2 4 1	(D)	4 2 3 1					
(O) N	4 01	04	0.4		D T 0				

113.	Fill in the blank:				
	He is anxioushear fro	m his	da	aughter.	
	(A) about	(B)	t	0	
	(C) of	(D)	C	on	
114.	Direction : The given sentence has l	oeen l	oro	ken up into four different parts. The	
	error, if any, will be in any one pa	rt of	th	e sentence. Select the option which	
	contains the part of the sentence w	hich	ha	s an error (spelling, grammatical or	
	contextual):				
	It will be more better (A)/if one of the	ne par	en	ts (B)/stays at home (C)/to look after	
	the children. (D)				
	(A) It will be more better				
	(B) if one of the parents				
	(C) stays at home				
	(D) to look after the children.				
115.	Direction : The following question	has 1	tw	o blanks, each blank indicating that	
	something has been omitted. Choose	the se	et (of words for each blank that best fits	
	in the context of the sentence :				
	Occupational safety and health are imp	ortan	t f	or improved and	
	(A) men, women				
	(B) boys, girls				
	(C) assets, markets				
	(D) productivity, growth				
(3)N	1-CL-04	32			

116.	Find the correctly spelt word:					
	(A) Sovereignty	(B)	Soveriegnty			
	(C) Sovereignity	(D)	Soveriegnity			
117.	Direction : Identify the words that	are con	ntextually similar to the phrase given in			
	bold and mark that as your answ	er. The	e options do not need to be correct			
	grammatically:					
	Indian politicians love to stage dharnas or sit-ins at the drop of a hat, quite often					
	taking their political melodrama to ridiculous levels.					
	(A) Immediately	(B)	Instantly			
	(C) Diligently	(D)	Factual			
118.	Out of the four alternatives choose t	he one	which can be substituted for the given			
	words/sentence in the question:					
	Having superior or intellectual interests and tastes					
	(A) Elite	(B)	Highbrow			
	(C) Sophisticated	(D)	Fastidious			
119.	Find the synonym of Philanderer :					
	(A) Time waster	(B)	Spendthrift			
	(C) Make flirt	(D)	Wanderer			
120.	Find the antonym of Dauntless :					
	(A) Mutinous	(B)	Intrepid			
	(C) Intriguing	(D)	Timid			
(3)N	Л-CL-04	33				